Thank you for reporting, we will resolve it shortly
Q.
If $E=cos^{2} 71^{o}+cos^{2}49^{o}+cos71^{o}cos49^{o},$ then the value of $10E$ is equal to
NTA AbhyasNTA Abhyas 2020
Solution:
$E=\frac{1 + cos \left(142\right)^{o}}{2}+\frac{1 + cos \left(98\right)^{o}}{2}+\frac{1}{2}\left(2 cos \left(71\right)^{o} cos \left(49\right)^{o}\right)$
$=1+\frac{1}{2}\left(cos \left(142\right)^{o} + cos \left(98\right)^{o}\right)+\frac{1}{2}\left(cos \left(120\right)^{o} + cos \left(22\right)^{o}\right)$
$=1+\frac{1}{2}\left(2 cos \left(120\right)^{o} cos \left(22\right)^{o}\right)+\frac{1}{2}\left(- \frac{1}{2} + cos \left(22\right)^{o}\right)$
$=1+\left(- \frac{1}{2}\right)cos \left(22\right)^{o}-\frac{1}{4}+\frac{1}{2}cos \left(22\right)^{o}=\frac{3}{4}$
$E=\frac{3}{4}=0.75$
$\Rightarrow 10E=7.5$