Q.
If $E_{1}$ and $E_{2}$ are two events of a random experiment such that $P\left(E_{1}\right)=\frac{1}{8}, P\left(E_{1} \mid E_{2}\right)=\frac{1}{3}$
$P\left(E_{2} \mid E_{1}\right)=\frac{1}{4}$, then match the items of List-I with the items of List-II.
List-I
List-II
(A)
$P(E_{2})$
I.
$\frac{3}{16}$
(B)
$P\left(E_{1} \cup E_{2}\right)$
II.
$\frac{3}{29}$
(C)
$P\left(\bar{E}_{1} \mid \bar{E}_{2}\right)$
III.
$\frac{3}{32}$
(D)
$P\left(E_{1} \mid \bar{E}_{2}\right)$
IV.
$\frac{26}{29}$
V.
$\frac{13}{32}$
The correct match is
List-I | List-II | ||
---|---|---|---|
(A) | $P(E_{2})$ | I. | $\frac{3}{16}$ |
(B) | $P\left(E_{1} \cup E_{2}\right)$ | II. | $\frac{3}{29}$ |
(C) | $P\left(\bar{E}_{1} \mid \bar{E}_{2}\right)$ | III. | $\frac{3}{32}$ |
(D) | $P\left(E_{1} \mid \bar{E}_{2}\right)$ | IV. | $\frac{26}{29}$ |
V. | $\frac{13}{32}$ |
AP EAMCETAP EAMCET 2019
Solution: