Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\displaystyle \sum _{r = 0}^{25}\left\{\left(\_{ \, }^{50}C_{r}^{}\right) . \left(\_{ \, }^{50 - r}C_{25 - r}^{}\right)\right\}=K\left(\_{ \, }^{50}C_{25}^{}\right),$ then $K$ is equal to

NTA AbhyasNTA Abhyas 2020Binomial Theorem

Solution:

LHS $=\displaystyle \sum _{r = 0}^{25} \,{}^{50} C_{r}\,{}^{50 - r}C_{25 - r}$
$=\displaystyle \sum _{r = 0}^{25} \frac{50 !}{r ! \left(50 - r\right) !} \frac{\left(50 - r\right) !}{\left(25 - r\right) ! \left(25\right) !}$
$=\displaystyle \sum _{r = 0}^{25} \, \frac{50 ! \, 25 !}{r ! \left(25 - r\right) ! \left(25\right) ! \left(25\right) !}$
$=\,{}^{50}C_{25} \, \displaystyle \sum _{r = 0}^{25} \,{}^{25} C_{r}$
$=\,{}^{50}C_{25} \, \times 2^{25}$
$\Rightarrow K=2^{25}$