Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\displaystyle \sum _{n = 1}^{\infty }\left(tan\right)^{- 1}\left(\frac{1}{7 - 5 n + n^{2}}\right)=\frac{\pi }{2}+\left(tan\right)^{- 1}c$ , then $c$ is equal to

NTA AbhyasNTA Abhyas 2022

Solution:

$\sum_{n=1}^{\infty} \tan ^{-1}\left(\frac{1}{7-5 n+n^{2}}\right)=\sum_{n=1}^{\infty} \tan ^{-1} \frac{(n-2)-(n-3)}{1+(n-2)(n-3)}$
$=\sum_{ n =1}^{\infty}\left[\tan ^{-1}( n -2)-\tan ^{-1}( n -3)\right]$
$=\frac{\pi}{2}-\tan ^{-1}(-2)=\frac{\pi}{2}+\tan ^{-1} 2=\frac{ a \pi}{ b }+\tan ^{-1} c$
$a =1, \quad b =2, \quad c =2$