Q.
If $\displaystyle\sum_{n=0}^{\infty} \tan ^{-1}\left(\frac{\cot ^{-1}\left(n^2+3 n+3\right)}{1+\cot ^{-1}(n+1) \cot ^{-1}(n+2)}\right)=\tan ^{-1}\left(\frac{p}{4}\right)$ then find the value of $\left[\cos ^{-1}(\cos (p-\right.$ 1)].
[Note: $[ k ]$ denotes greatest integer less than or equal to $k$.]
Inverse Trigonometric Functions
Solution: