Thank you for reporting, we will resolve it shortly
Q.
If $\displaystyle\lim _{x \rightarrow 0} \frac{\alpha x e^{x}-\beta \log _{e}(1+x)+\gamma x^{2} e^{-x}}{x \sin ^{2} x}=10, \alpha, \beta, \gamma \in R$ then the value of $\alpha+\beta+\gamma$ is ________.