Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If lim then the value of \alpha+\beta+\gamma is ________.

JEE MainJEE Main 2021Limits and Derivatives

Solution:

\displaystyle\lim _{x \rightarrow 0} \frac{\alpha x\left(1+x+\frac{x^{2}}{2}\right)-\beta\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}\right)+\gamma x^{2}(1-x)}{x^{3}}
\displaystyle\lim _{x \rightarrow 0} \frac{x(\alpha-\beta)+x^{2}\left(\alpha+\frac{\beta}{2}+\gamma\right)+x^{3}\left(\frac{\alpha}{2}-\frac{\beta}{3}-\gamma\right)}{x^{3}}=10
For limit to exist
\alpha-\beta=0, \alpha+\beta 2+\gamma=0
\frac{\alpha}{2}-\frac{\beta}{3}-\gamma=10 \ldots \ldots (i)
\beta=\alpha, \gamma=-3 \frac{\alpha}{2}
Put in (i)
\frac{\alpha}{2}-\frac{\alpha}{3}+\frac{3 \alpha}{2}=10
\frac{\alpha}{6}+\frac{3 \alpha}{2}=10
\Rightarrow \frac{\alpha+9 \alpha}{6}=10
\Rightarrow \alpha=6
\alpha=6, \beta=6, \gamma=-9
\alpha+\beta+\gamma=3