Q. If $\int \frac{\cos ^{4} x d x}{\sin ^{3} x\left(\sin ^{5} x+\cos ^{5} x\right)^{\frac{3}{5}}}=-\frac{1}{K}\left(1+\cot ^{P} x\right)^{\frac{K}{P}}+C$, then the value of $K+P$ is equal to (where $C$ is the constant of integration)
NTA AbhyasNTA Abhyas 2022
Solution: