Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If derivative of $\tan ^{-1}\left(\frac{2 x}{1-x^2}\right)$ w.r.t. $\cos ^{-1}\left(\frac{1-x^2}{1+x^2}\right)$ at $x=50$ is equal to a and derivative of $\tan ^{-1}\left(\frac{2 x}{1-x^2}\right)$ w.r.t. $\cos ^{-1}\left(\frac{2 x}{1+x^2}\right)$ at $x=-50$ is equal to $b$. Then $(a+b)$ equals

Inverse Trigonometric Functions

Solution:

$a = 1 $ and $b = 1$
$\therefore (a + b) = 2. $