Q. If derivative of $\tan ^{-1}\left(\frac{2 x}{1-x^2}\right)$ w.r.t. $\cos ^{-1}\left(\frac{1-x^2}{1+x^2}\right)$ at $x=50$ is equal to a and derivative of $\tan ^{-1}\left(\frac{2 x}{1-x^2}\right)$ w.r.t. $\cos ^{-1}\left(\frac{2 x}{1+x^2}\right)$ at $x=-50$ is equal to $b$. Then $(a+b)$ equals
Inverse Trigonometric Functions
Solution: