Thank you for reporting, we will resolve it shortly
Q.
If [.] denotes the greatest integer function then $\int\limits_\pi^{2 \pi}[2 \sin x] d x$ is equal to
Integrals
Solution:
$I=\int\limits_\pi^{\pi+\pi / 6}(-1) d x+\int\limits_{\pi+\frac{\pi}{6}}^{\pi+\frac{5 \pi}{6}}(-2) d x+\int\limits_{\pi+\frac{5 \pi}{6}}^{2 \pi}(-1) d x$
$=-\frac{\pi}{6}-2\left(\frac{4 \pi}{6}\right)-\left(\frac{\pi}{6}\right)=-\frac{5 \pi}{3}$