Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\Delta_{1}=\begin{vmatrix}1 & a^{2} & a^{3} \\ 1 & b^{2} & b^{3} \\ 1 & c^{2} & c^{3}\end{vmatrix}$ and $\Delta_{2}=\begin{vmatrix}b c & b+c & 1 \\ c a & c+a & 1 \\ a b & a+b & 1\end{vmatrix}$ then $\frac{\Delta_{1}}{\Delta_{2}}=$

TS EAMCET 2018

Solution:

$ \Delta_{1}=\begin{vmatrix}1 & a^{2} & a^{3} \\ 1 & b^{2} & b^{3} \\ 1 & c^{2} & c^{3}\end{vmatrix}$ $ R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1} $
$=\begin{vmatrix}1 & a^{2} & a^{3} \\ 0 & b^{2}-a^{2} & b^{3}-a^{3} \\ 0 & c^{2}-a^{2} & c^{3}-a^{3}\end{vmatrix} $
$(b-a)(c-a)\begin{vmatrix}1 & a^{2} & a^{3} \\ 0 & b+a & b^{2}+a^{2}+a b \\ 0 & c+a & c^{2}+a^{2}+a c\end{vmatrix}$
$=(b-a)(c-a)\left[(b+a)\left(c^{2}+a^{2}+a c\right)\right.$ $\left.-(c+a)\left(b^{2}+a^{2}+a b\right)\right]$
$(b-a)(c-a)\left[b c^{2}+a^{2} b+a b c+a c^{2}\right.$
$ \left.+a^{3}+a^{2} c-b^{2} c-a^{2} c-a b c-b^{2} a-a^{3}-a^{2} b\right] $
$=(b-a)(c-a)[(b-c)(a b+b c+c a)] $
$=-(a-b)(b-c)(c-a)(a b+b c+c a) $
Now, $\Delta_{2}=\begin{vmatrix}b c & b+c & 1 \\ c a & c+a & 1 \\ a b & a+b & 1\end{vmatrix}$
$R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$
$=\begin{vmatrix}b c & b+c & 1 \\ c(a-b) & a-b & 0 \\ b(c-a) & a-c & 0\end{vmatrix}=(a-b)(c-a)\begin{vmatrix}b c & b+c & 1 \\ c & 1 & 0 \\ a & 1 & 0\end{vmatrix}$
$=(a-b)(c-a)[ l (c-b)]$
$=(a-b)(c-b)(c-a)$
Now, $\frac{\Delta_{1}}{\Delta_{2}}=\frac{-(a-b)(b-c)(c-a)(a b+b c+c a)}{-(a-b)(b-c)(c-a)}$
$\frac{\Delta_{1}}{\Delta_{2}}=(a b+b c+c a)$