Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If dydx+2ytanx=sinx,0<x<π2 and y(π3)=0, then the maximum value of y(x) is

JEE MainJEE Main 2022Application of Derivatives

Solution:

dydx+2ytanx=sinx
I.F =e2tanxdx=eln(secx)2=sec2x
y(sec2x)=sinxsec2xdx+C
ysec2x=secx+C
Put x=π3,y=0
y=cosx2cos2x
=182(cosx14)2
ymax=18