Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\frac{d}{d x}\left(\frac{1+x^{2}+x^{4}}{1+x+x^{2}}\right)=a x +b$, then $(a, b)=$

Solution:

$a x +b=\frac{d}{d x}\left\{\frac{1+x^{2}+x^{4}}{1+x+x^{2}}\right\}$
$=\frac{d}{d x}\left\{\frac{\left(1+x+x^{2}\right)\left(1-x+x^{2}\right)}{1+x+x^{2}}\right\}$
$=\frac{d}{d x}\left\{1-x+x^{2}\right\} =-1+2 x$
$\Rightarrow a=2, b=-1 .$