Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If curve $f(x)=\int x^{11}\left(2 x^{3}+3 x+4\right)^{3}\left(1+x+x^{3}\right) d x$ passes through origin & $f(1)=\frac{p}{q}$ where $p \& q$ are relatively prime then $p-q$ is

Integrals

Solution:

$f(x)=\int x^{11}\left(2 x^{3}+3 x+4\right)^{3}\left(1+x+x^{3}\right) d x$
$2 x^{6}+3 x^{4}+4 x^{3}=t$
$f(x)=\frac{1}{48}\left(2 x^{6}+3 x^{4}+4 x^{3}\right)^{4}$
$f(1)=\frac{9^{4}}{48}=\frac{2187}{16}=\frac{p}{q}$
$\therefore p-q=2171$