Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\cot \alpha \cot \beta =2$ , then $ \frac{\cos\left(\alpha +\beta\right)}{\cos\left(\alpha-\beta\right)} $ is equal to

COMEDKCOMEDK 2012Application of Integrals

Solution:

$ \frac{\cos\left(\alpha +\beta\right)}{\cos\left(\alpha-\beta\right)} = \frac{\cos\alpha \cos \beta -\sin \alpha \sin \beta }{\cos \alpha \cos \beta + \sin \alpha \sin \beta}$
Dividing numerator and denominator by $\sin \alpha \, \sin \beta$
$\frac{\cot \alpha \cot \beta-1}{ \cot \alpha \cot \beta + 1} = \frac{2-1}{2+1}=\frac{1}{3} $