Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\cot \alpha=1$ and $\sec \beta=-\frac{5}{3}$, where $\pi<\alpha<\frac{3 \pi}{2}$ and $\frac{\pi}{2}<\beta<\pi$, then the value of $\tan (\alpha+\beta)$ and the quadrant in which $\alpha+\beta$ lies, respectively are

JEE MainJEE Main 2022Trigonometric Functions

Solution:

$\cot \alpha=1, \sec \beta=\frac{-5}{3}, \cos \beta=\frac{-3}{5}, \tan \beta=\frac{-4}{3}$
$\tan (\alpha+\beta)=\frac{1-\frac{4}{3}}{1+\frac{4}{3} \times 1}=\frac{-1}{7}$