Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\left(\cot ^{-1} x\right)^{2}-7\left(\cot ^{-1} x\right)+10>0$ , then the range of $x$ will be

NTA AbhyasNTA Abhyas 2020Inverse Trigonometric Functions

Solution:

$\left(\left(cot\right)^{- 1} x - 5\right)\left(\left(cot\right)^{- 1} ⁡ x - 2\right)>0$
$\Rightarrow \left(cot\right)^{- 1} x \in \left(- \in fty , \, 2\right)\cup\left(5 , \, \in fty\right)$
$\Rightarrow \left(cot\right)^{- 1} x\in \left(0 , \, 2\right)$ (Taking intersection with range of $cot^{- 1} x$ )
$\Rightarrow n\in \left(\right.cot 2 , \, \in fty \left.\right)$