Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\cosh\, x=\frac{\sqrt{14}}{3}, \sinh \,x=\cos \theta$ and
$-\pi<\theta<-\frac{\pi}{2}$, then $\sin \,\theta=$

TS EAMCET 2018

Solution:

$\because \cos h^{2} x-\sin h^{2} x=1$
$\Rightarrow \cos h^{2} x-\cos ^{2} \theta=1 [\because \sin\,h x=\cos \theta] $
$\Rightarrow \cos ^{2} \theta=\cos\,h ^{2} x-1 $
$=\frac{14}{9}-1=\frac{5}{9} $
So, $\sin ^{2} \theta=1-\cos ^{2} \theta=1-\frac{5}{9}=\frac{4}{9} $
$ \because -\pi<\theta<-\frac{\pi}{2} $

$ \therefore \sin \theta=-\frac{2}{3}$