Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\cos (\log \, i^{4i}) = a + ib$, then

UPSEEUPSEE 2017

Solution:

Given, $ a+i b=\cos \left(\log i^{4 i}\right)$
$=\cos [4 i \log i] $
$=\cos \left[4 i \log \left(e^{i \frac{\pi}{2}}\right)\right]=\cos \left[(4 i)\left(i \frac{\pi}{2}\right)\right]$
$=\cos (-2 \pi)=1$
$ a =1$ and $b=0$