Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\cos (f(x))=\frac{1-x^{2}}{1+x^{2}}$ and $\tan (g(x))=\frac{3 x-x^{3}}{1-3 x^{2}}$ then $\frac{d f}{d g}=$

AP EAMCETAP EAMCET 2019

Solution:

Given, $ \cos (f(x))=\frac{1-x^{2}}{1+x^{2}} $
Put $ x=\tan\, \theta $
$\cos (f(x))=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta} $
$\cos (f(x))=\cos 2 \theta $
$f(x)=2\, \theta=2 \tan ^{-1} \,x$
$\tan (g(x))=\frac{3 x-x^{3}}{1-3 x^{2}}$
Put $ x=\tan \,\theta $
$ \tan (g(x)) =\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta} $
$ \tan (g(x)) =\tan 3 \theta $
$\therefore \, g(x) =3 \theta=3 \tan ^{-1} x $
$\therefore \, \frac{f'(x)}{g'(x)} =\frac{2}{3} $
$\therefore \, \frac{d f}{d g} =\frac{2}{3}$