Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\cos \alpha+a \cos \beta+b \cos \gamma=0=\sin \alpha+a \sin \beta+b \sin \gamma$ then :

Complex Numbers and Quadratic Equations

Solution:

Correct answer is (a) $\cos 3 \alpha+a^3 \cos 3 \beta+b^3 \cos 3 \gamma=3 a b \cdot \cos (\alpha+\beta+\gamma)$Correct answer is (b) $\sin 3 \alpha+a^3 \sin 3 \beta+b^3 \sin 3 \gamma=3 a b \cdot \sin (\alpha+\beta+\gamma)$Correct answer is (c) $e^{i k \Lambda}+a e^{i \beta}+b e^{i f}=0$Correct answer is (d) $e ^{ i (\alpha+\pi / 2)}+ ae ^{ i (\beta+\pi / 2)}+ be ^{ i (\gamma+\pi / 2)}=0$