Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $cos\,\alpha+2\,cos\,\beta+3\,cos\,\gamma=0, sin\,\alpha+2\,sin\,\beta+3\,sin\,\gamma=0$ and $\alpha+\beta+\gamma=\pi$, then $3\alpha+8\,sin\,3\beta+27\,sin\,3\,\gamma$=

Trigonometric Functions

Solution:

$sin\,3\alpha+8\,sin\,3 \beta+27\,sin\,3\gamma=18\,sin (\alpha+\beta+\gamma)$
$=18\,sin\,\pi=0$