Thank you for reporting, we will resolve it shortly
Q.
If $\cos (A-B)=3 / 5$ and $\tan A \tan B=2$, then which one of the following is true ?
EAMCETEAMCET 2007
Solution:
Given, $\cos (A-B)=\frac{3}{5}$ and $\tan A \tan B=2$
$\Rightarrow \frac{\sin A \sin B}{\cos A \cos B}=2$
Using componendo and dividendo
$\frac{\sin A \sin B+\cos A \cos B}{\sin A \sin B-\cos A \cos B}=\frac{2+1}{2-1}$
$\Rightarrow \frac{\cos (A-B)}{-\cos (A+B)}=\frac{3}{1}$
$\Rightarrow \frac{3 / 5}{-\cos (A+B)}=\frac{3}{1}$
$\Rightarrow -3 \cos (A+B)=\frac{3}{5}$
$\Rightarrow \cos (A+B)=-\frac{1}{5}$