Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\cos 7 \theta=\cos \theta-\sin 4 \theta$, then the general value of $\theta$ is

BITSATBITSAT 2013

Solution:

$\cos 7 \theta=\cos \theta-\sin 4 \theta$
$p \sin 4 \theta=\cos \theta-\cos 7 \theta$
$p \sin 4 \theta=2 \sin 4 \theta \sin 3 \theta$
$p \sin 4 \theta(1-2 \sin 3 \theta)=0$
$\therefore \sin 4 \theta=0$ or $\sin 3 \theta=\frac{1}{2}$
$\Rightarrow 4 \theta=n \pi$ or $3 \theta=n \pi+(-1)^{n} \frac{\pi}{6}$
$\Rightarrow \theta=\frac{n \pi}{4}$ or $\frac{n \pi}{3}+(-1)^{n} \frac{\pi}{18}$