Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\cos^{-1} x > \sin^{-1} x ,$ then $ x $ lies in the interval

KEAMKEAM 2015

Solution:

We know that, $\cos ^{-1} X$ and $\sin ^{-1} x$ exist for $X \in[-1,1]$
Now, $\cos ^{-1} X>\sin ^{-1} X$
$\Rightarrow \cos ^{-1} x>\frac{\pi}{2}-\cos ^{-1} x$
$\Rightarrow 2 \cos ^{-1} x>\frac{\pi}{2}$
$\Rightarrow \cos ^{-1} x>\frac{\pi}{4}$
$\Rightarrow x \in\left[-1, \frac{1}{\sqrt{2}}\right)$