Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $cos^{-1} x+cos^{-1} y=\frac{2\pi}{7},$ then the value of $\sin^{-1} x+\sin^{-1} y$ is equal to

KEAMKEAM 2015Inverse Trigonometric Functions

Solution:

$\cos ^{-1} x+\cos ^{-1} y=\frac{2 \pi}{7}$
$\Rightarrow \frac{\pi}{2}-\sin ^{-1} x+\frac{\pi}{2}-\sin ^{-1} y=\frac{2 \pi}{7}$
$\Rightarrow \sin ^{-1} x+\sin ^{-1} y=\frac{\pi}{2}+\frac{\pi}{2}-\frac{2 \pi}{7}$
$\Rightarrow \sin ^{-1} x+\sin ^{-1} y=\frac{5 \pi}{7}$