Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\left(\cos ^{-1} x\right)^{2015}>\left(\cos ^{-1} x\right)^{2016}>\left(\cos ^{-1} x\right)^{2017}$ then $x$ lies in the interval

Inverse Trigonometric Functions

Solution:

$ t =\cos ^{-1} x $
$t ^{2015}> t ^{2016}> t ^{20117}$
$\therefore t \in(0,1)$
$0< \cos ^{-1} x < 1$
$\text { and } \cos 1< x <1$