Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\cos^{-1} \frac{3}{5} + \cos^{-1} \frac{12}{13} = \cos^{-1} k$, then the value of $k$ is

UPSEEUPSEE 2018

Solution:

We have,
$\cos^{-1} \frac{3}{5} + \cos^{-1} \frac{12}{13} = \cos^{-1}\,k$
$\Rightarrow \cos^{-1}\left\{\frac{3}{5} \cdot \frac{12}{13}-\sqrt{1-\left(\frac{3}{5}\right)^{2}\sqrt{1-\left(\frac{12}{13}\right)^{2}}}\right\} = \cos^{-1}\,k$
$[\because \cos^{-1}\,x + \cos^{-1}\, y = \cos^{-1}\left\{xy-\sqrt{1-x^{2}}\sqrt{1-y^{2}}\right\}$, if
$-1 \le x, y \le 1$ and $x+y \ge 0]$
$\Rightarrow \cos^{-1}\left\{\frac{36}{65}-\frac{4}{5} \times \frac{5}{13}\right\} = \cos^{-1}\,k$
$\Rightarrow \cos^{-1}\left\{\frac{36}{65}-\frac{20}{65}\right\} = \cos^{-1}\,k$
$\Rightarrow \cos^{-1} \frac{16}{65} = \cos^{-1}\,k$
$\Rightarrow k=\frac{16}{65}$