Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If coefficient of $x^{n}$ in $(1+x)^{101}\left(1-x+x^{2}\right)^{100}$ is nonzero, then $n$ can not be of the form

Binomial Theorem

Solution:

$(1+x)^{101}\left(1-x+x^{2}\right)^{100}=(1+x)\left(1+x^{3}\right)^{100}$
$=(1+x)\left( C _{0}+C_{1} x^{3}+C_{2} x^{6}+\ldots+C_{100} x^{300}\right)$
Clearly in this expression $x^{\lambda}$ will be present if $\lambda=3 t$,
or $\lambda=3 t+1$
So, $\lambda$ can not be of the form $3 t+2$.