Q. If area of triangle whose vertices are $\left(a, a^2\right),\left(b, b^2\right),\left(c, c^2\right)$ is 1 and area of another triangle whose vertices are $\left(\alpha^2, \alpha\right),\left(\beta^2, \beta\right)$ and $\left(\gamma^2, \gamma\right)$ is 2 , then the absolute value of $\begin{vmatrix}(a+\alpha)^2 & (b+\alpha)^2 & (c+\alpha)^2 \\ (a+\beta)^2 & (b+\beta)^2 & (c+\beta)^2 \\ (a+\gamma)^2 & (b+\gamma)^2 & (c+\gamma)^2\end{vmatrix}$is equal to
Determinants
Solution: