Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\angle A = 90^°$ in the $\Delta ABC$, then $\tan^{-1}\left(\frac{c}{a + b}\right) + \tan^{-1} \left(\frac{b}{a + c}\right)$ is equal to

Inverse Trigonometric Functions

Solution:

We have, $ABC$ is a right angled $\Delta$ at $A$
$\Rightarrow \,\,a^{2} = b^{2} + c^{2}\ldots\left(i\right)$
Now, $\tan^{-1}\left(\frac{c}{a + b}\right) + \tan^{-1} \left(\frac{b}{a + c}\right)$
$ = \tan^{-1}\left\{\frac{\left(\frac{c}{a + b}\right) +\left(\frac{b}{a + c}\right)}{1-\left(\frac{c}{a + b}\right) \left(\frac{b}{a + c}\right)}\right\}$
image
$ = \tan^{-1}\left\{\frac{ac+c^{2} +b^{2} +ab}{a^{2} + ab+ac}\right\}$
$ = \tan^{-1}\left\{\frac{ac+a^{2} +ab}{a^{2} + ab+ac}\right\}$ using $\left(i\right)$
$= \tan^{-1}\left(1\right) = \frac{\pi}{4}$