Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\alpha$ is the only real root of the equation $x ^3+ bx ^2+ cx +1=0$, then the value of $\tan ^{-1} \alpha+\tan ^{-1}\left(\frac{1}{\alpha}\right)$ is equal to

Inverse Trigonometric Functions

Solution:

$\Theta f(0)=1$
$\therefore$ Only real root $\alpha<0$
$\therefore \tan ^{-1} \alpha+\left(-\pi+\cot ^{-1} \alpha\right)=-\pi+\frac{\pi}{2}=\frac{-\pi}{2}$