Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If 'α' is the only real root of the equation x3+bx2+cx+1=0(b+c) , then the value of tan-1(α)+ tan-1(α-1) is equal to
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $'\alpha'$ is the only real root of the equation $x^3+bx^2+cx+1=0(b+c)$ , then the value of $\tan^{-1}(\alpha)+\tan^{-1}(\alpha^{-1})$ is equal to
Inverse Trigonometric Functions
A
$-\frac{\pi}{2}$
38%
B
$\frac{\pi}{2}$
28%
C
0
15%
D
cannot be determined
18%
Solution:
Let $ f\left(x\right) = x^{3}+bx^{2} +cx+1$
$\therefore f\left(0\right) = 1>, f\left(-1\right)= b-c <0 $
$ \therefore -1 < \alpha < 0$ and
$ \therefore tan^{-1}\left(\alpha\right) +tan^{-1} \frac{1}{\alpha} = -\frac{\pi}{2} $