Q. If $ \alpha ,\,\beta ,\,\gamma $ are the cube roots of unity, then the value of the determinant $ \left| \begin{matrix} {{e}^{\alpha }} & {{e}^{2\alpha }} & ({{e}^{3\alpha }}-1) \\ {{e}^{\beta }} & {{e}^{2\beta }} & ({{e}^{2\beta }}-1) \\ {{e}^{\gamma }} & {{e}^{2\gamma }} & ({{e}^{3\gamma }}-1) \\ \end{matrix} \right| $ is equal to
Solution: