Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\alpha, \beta(\beta>\alpha)$ are the roots of $f(x) \equiv a x^{2}+b x+c=0, a \neq 0$ and $f(x)$ is an even function and $I=\int_{\alpha}^{\beta} \frac{e_{f}^{f\left(\frac{f(x)}{x-\alpha}\right)}}{f\left(\frac{f(x)}{x-\alpha}\right)+e^{f}\left(\frac{f(x)}{x-\beta}\right)}$, then $|I|$ is equal to

Integrals

Solution:

$I=\int_{\alpha}^{\beta} \frac{e^{f\left(\frac{a(x-\alpha)(x-\beta)}{x-\alpha}\right)}}{e^{f\left(\frac{a(x-\alpha)(x-\beta)}{x-\alpha}\right)_{e}^{f}\left(\frac{a(x-\alpha)(x-\beta)}{x-\beta}\right)}} d x$
$=\int_{\alpha}^{\beta} \frac{e^{f(a(x-\beta))}}{e^{f(a(x-\beta))+f(a(x-\alpha))}} d x \ldots(1)$
$=\int_{\alpha}^{\beta} \frac{e^{f(a(\alpha+\beta-x-\beta))}}{e^{f(a(\alpha+\beta-x-\beta))}+e^{f(a(\alpha+\beta-x-\alpha))}} d x$
$I=\int_{\alpha}^{\beta} \frac{e^{f(a(x-\alpha))}}{e^{f(a(x-\alpha)}+e^{\int(a(x-\beta))}} d x \ldots(2)$
$2 I=\int_{\alpha}^{\beta} d x$
$\Rightarrow I=\frac{|\alpha-\beta|}{2}=\frac{\sqrt{b^{2}-4 a c}}{2|a|}$