Thank you for reporting, we will resolve it shortly
Q.
If $\alpha, \beta$ are roots of $2 x^2-5 x+p=0$, such that $0<\alpha<1$ and $1<\beta<3$, then the number of integral values of $p$ is
Complex Numbers and Quadratic Equations
Solution:
$ f (0)>0 \Rightarrow p >0 $ ....(1)
$f (1)<0 \Rightarrow 2-5+ p <0 \Rightarrow (1) $....(2)
$f (3)>0 \Rightarrow 18-15+ p >0 \Rightarrow p >-3$....(3)
Intersection of (1), (2) and (3)
$p \in(0,3)$
Number of integral values $=2$