Q. If $\alpha $ and $\beta $ are the roots of the equation $\left[1 5\right]\begin{bmatrix} 1 & 3 \\ -4 & 7 \end{bmatrix}^{2}\begin{bmatrix} \frac{7}{19} & -\frac{3}{19} \\ \frac{4}{19} & \frac{1}{19} \end{bmatrix}^{4}$ $\begin{bmatrix} 1 & 3 \\ -4 & 7 \end{bmatrix}^{2}\begin{bmatrix} x^{2}-5x+5 \\ -3 \end{bmatrix}=\left[- 4\right],$ then the value of $\left(2 - \alpha \right)\left(2 - \beta \right)$ is
NTA AbhyasNTA Abhyas 2022
Solution: