Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ABCDEF$ is a regular hexagon with its center at $O$ Then $\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}+\overrightarrow{AE}+\overrightarrow{AF}$ is equal to

Vector Algebra

Solution:

If $\overrightarrow{AB}=\vec{a}, \overrightarrow{BC}=\vec{b}$, then $\overrightarrow{AC}=\vec{a}+\vec{b}$
$\overrightarrow{AD}=2 \vec{b}, \overrightarrow{AE}=\overrightarrow{AD}+\overrightarrow{DE}=2 \vec{b}-\vec{a}$
and $\overrightarrow{AF}=\overrightarrow{AE}+\overrightarrow{EF}=\overrightarrow{AE}+\overrightarrow{CB}=2 \vec{b}-\vec{a}-\vec{b}=\vec{b}-\vec{a}$
$\therefore \overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}+\overrightarrow{AE}+\overrightarrow{AF}=6 \overrightarrow{BC}=6 \overrightarrow{AO}$