Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ABCDEF$ is a regular hexagon, then $\overrightarrow{AD} + \overrightarrow{EB} + \overrightarrow{FC}$ is equal to

Vector Algebra

Solution:

$ABCDEF$ is a regular hexagon. We know from the hexagon that $\overrightarrow{AD}$ is parallel to $\overrightarrow{BC}$.
image
$\Rightarrow \overrightarrow{AD} = 2 \overrightarrow{BC}$
Similarly, $\overrightarrow{EB}$ is parallel to $\overrightarrow{FA}$.
$\Rightarrow \overrightarrow{EB} = 2 \overrightarrow{FA}$
and $\overrightarrow{FC}$ is parallel to $\overrightarrow{AB}$.
$\Rightarrow \overrightarrow{FC} = 2 \overrightarrow{AB}$
Thus, $\overrightarrow{AD} + \overrightarrow{EB} + \overrightarrow{FC} = 2 \overrightarrow{BC} + 2 \overrightarrow{FA} + \overrightarrow{AB}$
$= 2\left(\overrightarrow{FA} + \overrightarrow{AB} + \overrightarrow{BC}\right) = 2\left( \overrightarrow{FC}\right) = 2\left(2 \overrightarrow{AB}\right) = 4\left( \overrightarrow{AB}\right)$