Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $a+x=b+y=c+z+1,$ where $a, b, c, x$ $y , z$ are non-zero distinct real numbers, then $\begin{vmatrix}x&a+y&x+a\\ y&b+y&y+b\\ z&c+y&z+c\end{vmatrix} $ is equal to :

JEE MainJEE Main 2020Determinants

Solution:

$a + x = b + y = c +z + 1$
$ \begin{vmatrix}x&a+y&x+a\\ y&b+y&y+b\\ z&c+y&z+c\end{vmatrix} $
$C_{3} \rightarrow C_{3} - C_{1} $
$\begin{vmatrix}x&a+y&a\\ y&b+y&b\\ z&c+y&c\end{vmatrix} $
$C_{2} \rightarrow C_{2} -C_{3}$
$ \begin{vmatrix}x&y&a\\ y&y&b\\ z&y&c\end{vmatrix}$
$R_3 \to R_3 - R_1, R_2 \to R_2 - R_1$
$\begin{vmatrix}x&y&a\\ y-x&0&b-a\\ z-x&0&c-a\end{vmatrix}$
$=(-y)[(y-x)(c-a)-(b-a)(z-x)]$
$=(-y)[(a-b)(c-a)+(a-b)(a-c-1)]$
$=(-y)[(a-b)(c-a)+(a-b)(a-c)+b-a)$
$=-y(b-a)=y(a-b)$