Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If a= underset55 texttimes underbrace111 ldots . . 1 , b=1+10+102+103+104 and c=1+105+1010+ ldots .+1050 , then
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $a=\underset{55 \, \text{times}}{\underbrace{111 \ldots . . 1}}$ , $b=1+10+10^{2}+10^{3}+10^{4}$ and $c=1+10^{5}+10^{10}+\ldots .+10^{50}$ , then
NTA Abhyas
NTA Abhyas 2022
A
$b,\frac{a}{2},c$ are in arithmetic progression
B
$b,\sqrt{a},c$ are in geometric progression
C
$a,b,c$ are in geometric progression
D
$a,\sqrt{b},c$ are in arithmetic progression
Solution:
$a=1+10+10^{2}+\ldots \ldots ..+10^{54}=\frac{10^{55} - 1}{9}$
$b=\frac{10^{5} - 1}{9}$
$\begin{aligned} c &=\frac{\left(10^{5}\right)^{11}-1}{10^{5}-1}=\frac{10^{55}-1}{10^{5}-1} \\ & \Rightarrow \frac{a}{b}=c \\ & \Rightarrow a=b c \\ & \Rightarrow b, \sqrt{a}, c \text { are in G.P. } \end{aligned}$