Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $a \sin ^{2} \theta +b \cos ^{2} \theta=c$ then $\tan ^{2} \theta$ is equal to

EAMCETEAMCET 2010

Solution:

$a \sin ^{2} \theta +b \cos ^{2} \theta=c$
On dividing both sides by $\cos ^{2} \theta$
$a \tan ^{2} \theta +b=c \sec ^{2} \theta$
$\Rightarrow a \tan ^{2} \theta +b=c\left(1+\tan ^{2} \theta\right)$
$\rightarrow a \tan ^{2} \theta +b=c +c \tan ^{2} \theta$
$\Rightarrow b=c+ c \tan ^{2} \theta-a \tan ^{2} \theta$
$\Rightarrow (c-a) \tan ^{2} \theta=(b-c)$
$\Rightarrow \tan ^{2} \theta=\frac{b-c}{c-a}$ or $\frac{c-b}{a-c}$