Thank you for reporting, we will resolve it shortly
Q.
If a simple harmonic motion is represented by $\frac{d^{2}x}{dt^{2}}+\alpha\,x=0,$ its time period is :
AIEEEAIEEE 2005Oscillations
Solution:
$\frac{d^{2}x}{dt^{2}}=-\alpha\,x\,...\left(i\right)$
We know
$a=\frac{d^{2}x}{dt^{2}}=-\omega^{2}\,x\,...\left(ii\right)$
From Eqs. $\left(i\right)$ and $\left(ii\right)$, we have
$\omega^{2}=\alpha$
$\omega=\sqrt{\alpha}$
or $\frac{2\pi }{T}=\sqrt{\alpha}$
$\therefore T=\frac{2\pi }{T}=\sqrt{\alpha}$