Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If a pushing force making an angle $\alpha$ with horizontal is applied on a block of mass $m$ placed on horizontal table and angle of friction is $\beta$, then minimum magnitude of force required to move the block is

Laws of Motion

Solution:

image
Angle of friction is $\beta$
$\Rightarrow \mu=\tan \beta$
$N=m g +F \sin \alpha$
To just move the block
$F \cos \alpha=\mu N$
$F \cos \alpha=\tan \beta(m g+ F \sin \alpha)$
$F(\cos \alpha-\tan \beta \sin \alpha)=m g \tan \beta$
$F(\cos \alpha \cos \beta-\sin \alpha \sin \beta)=m g \sin \beta$
$F=\frac{m g \sin \beta}{\cos (\alpha+\beta)}$