Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $a + \frac{\pi}{2} < 2 \tan^{-1} x + 3 \cot^{-1} x < b $ then 'a' and 'b' are respectively.

KCETKCET 2019Inverse Trigonometric Functions

Solution:

$a+\frac{\pi}{2} <\, sin^{-1}x+2cot^{-1}x+\frac{\pi}{2}<\,b$
$a+\frac{\pi}{2}<\, \frac{\pi}{2}+cot^{-1}x+\frac{\pi}{2}<\,b$
$a+\frac{\pi}{2}<\,\pi+cot^{-1}x<\,b$
$a-\frac{\pi}{2}<\, cot^{-1}x<\, b-\pi$
$\left[since\, 0<\,cot^{1}x<\,\pi\right]$
$\Rightarrow \, a=\frac{\pi}{2} b=2\pi$