Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $A(n)$ represents the area bounded by the curve $y=n \log _e x(n \in N)$ and $n>1$, $x$-axis and the lines $x =1$ and $x = e$. Then $A ( n )- A ( n -1)$ is equal to

Application of Integrals

Solution:

image
$ A(n)=\int\limits_1^e x \log _e x d x, f(x)=n \log _e x $
$A(n)=n\left[x \log _e x-x\right]_1^c $
$=n[e \log e-e-(1 \log 1-1)]=n$
$\text { So, } A(n)-A(n-1) $
$=n-(n-1)=1$