Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The expression $3\left[\sin ^{4}\left(\frac{3}{2} \pi-\alpha\right)+\sin ^{4}(3 \pi+\alpha)\right]$ $-2\left[\sin ^{6}\left(\frac{1}{2} \pi+\alpha\right)+\sin ^{6}(5 \pi-\alpha)\right]$ is equal to

Trigonometric Functions

Solution:

$3\left[\sin ^{4}\left(\frac{3}{2} \pi-\alpha\right)+\sin ^{4}(3 \pi+\alpha)\right]-2$
$\left[\sin ^{6}\left(\frac{1}{2} \pi+\alpha\right)+\sin ^{6}(5 \pi-\alpha)\right]$
$=3\left(\cos ^{4} \alpha+\sin ^{4} \alpha\right)-2\left(\cos ^{6} \alpha+\sin ^{6} \alpha\right)$
$=3\left(1-2 \sin ^{2} \alpha \cos ^{2} \alpha\right)-2\left[\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)^{3}\right.$
$\left.-3 \sin ^{2} \alpha \cos ^{2} \alpha\left(\sin ^{2} \alpha+\cos ^{2} \alpha\right)\right]$
$=3\left(1-2 \sin ^{2} \alpha \cos ^{2} \alpha\right)-2\left[1-3 \sin ^{2} \alpha \cos ^{2} \alpha\right]$
$=1$