Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If A.M. of two numbers is twice of their G.M., then the ratio of greatest number to smallest number is

Sequences and Series

Solution:

Let the numbers be $x$ and $y$.
Since, $ \frac{x+y}{2}=2 \sqrt{x y} $
$ \Rightarrow x+y =4 \sqrt{x y} ....$(i)
$ \Rightarrow (x+y)^2 =16 x y $
Also, $ (x-y)^2 =(x+y)^2-4 x y $
$\therefore (x-y)^2 =16 x y-4 x y=12 x y $
$ \Rightarrow x-y =2 \sqrt{3 x y}.....$(ii)
On solving Eqs. (i) and (ii), we get and
$x=(2+\sqrt{3}) \sqrt{x y}$
and $ y=(2-\sqrt{3}) \sqrt{x y}$
$\therefore $ Required ratio $ =\frac{x}{y}=\frac{(2+\sqrt{3}) \sqrt{x y}}{(2-\sqrt{3}) \sqrt{x y}} $
$ =(2+\sqrt{3})^2=7+4 \sqrt{3}$