Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If a line makes angles $ \alpha ,\beta ,\gamma $ and $ \delta $ with four diagonals of a cube, then the value of $ si{{n}^{2}}\alpha +si{{n}^{2}}\beta +si{{n}^{2}}\gamma +si{{n}^{2}}\delta $ is

KEAMKEAM 2008

Solution:

We know that, $ {{\cos }^{2}}\alpha +{{\cos }^{2}}\beta +{{\cos }^{2}}\gamma +{{\cos }^{2}}\delta =\frac{4}{3} $ ...(i)
where $ \alpha ,\beta ,\gamma $ and $ \delta $ are the angles with diagonals of cube, then from Eq. (i), we get
$ 1-{{\sin }^{2}}\alpha +1-{{\sin }^{2}}\beta +1-{{\sin }^{2}}\gamma +1-{{\sin }^{2}}\delta =\frac{4}{3} $
$ \Rightarrow $ $ {{\sin }^{2}}\alpha +si{{n}^{2}}\beta +{{\sin }^{2}}\gamma +{{\sin }^{2}}\delta =\frac{8}{3} $