Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If a line in the space makes angles $\alpha, \beta$ and $\gamma$ with the coordinate axes, then $\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma+\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=$

Solution:

$\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma+\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma$
$=2 \cos ^{2} \alpha-1+2 \cos ^{2} \beta-1+2 \cos ^{2} \gamma-1+1-\cos ^{2} \alpha+1-\cos ^{2} \beta+1-\cos ^{2} \gamma$
$=\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$