Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $A$ is invertible matrix and $B$ is any matrix, then

UPSEEUPSEE 2010

Solution:

Since, $A$ is invertible $\Rightarrow A^{-1}$ exists.
Now, Rank $(B)=\operatorname{Rank}\left(A^{-1}(A B)\right)$
$\leq \operatorname{Rank}(A B) [\because Rank(P Q) \leq \operatorname{Rank} Q]$
But, Rank $(A B) \leq \operatorname{Rank}(B)$
$\therefore $ Rank $(A B)=\operatorname{Rank}(B)$